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Abstract—This paper presents results of an experimental investigation of magneto-fluid-mechanic heat
transfer from quartz-coated hot film probes (0-015 cm and 0-005 cm dia) traversed vertically through a
tank filled with mercury and aligned axially with a horizontal magnetic field. Findings exhibit a reduction
in the probe’s heat transfer due to the magnetic field in the Reynolds number range from 0 to 130 and
Hartmann number range from 0 to 4-68 for magnetic interaction parameter values of order one. Four
regions of heat transfer are identified, each associated with a specific flow configuration about the probe,
and are described as follows:

(1) In the free convection region the magnetic field suppresses the free convective heat transfer, eventu-
ally limiting the heat transfer to thermal conduction. Heat transfer in this region is examined through an
approximate solution of the momentum and energy equations.

(2) For very low Reynolds numbers of about three there is an increase in the heat transfer from the free
convection state. The Reynolds number at which this initial region of forced convection becomes important
is predicted by a theoretical criterion which compares free and forced convection velocities. This increase
becomes detectable at a lower Reynolds number in the presence of a magnetic field.

(3) Beginning at a Reynolds number of about five, the Nusselt number can be expressed in a power law
relation with the Reynolds number where the power is independent of magnetic field strength, Also a
theoretical correlation is presented which determines the Reynolds numbers for various Hartmann numbers
at which this stationary Foppl vortex pair initiates. The magnetic field inhibits the formation of this pattern.

(4) The generation of von Karman vortex shedding behind the probe at a Reynolds number of about 34
yields a slight increase in the power law of the heat transfer relation which is again independent of magnetic
field strength. Reynolds numbers for various Hartmann numbers at which shedding begins are represented

mathematically. The magnetic field delays the onset of the vortex street and suppresses its size.

NOMENCLATURE Pr, Prandtl number = C u/k;

B, magnetic field strength; Re, Reynolds number = dU _/v;
C,,...,C,, empirical constants; Re,, Reynolds number for zero Hart-
C » specific heat at constant volume; mann number;
d, probe diameter; Re , Reynolds number for Hartmann
Gr, Grashof number = gBATd3/v?; number M ;
dJ, gravitational acceleration; RMS, root-mean-square;
h, film heat transfer coefficient; s, length of Foppl vortex pair
k, thermal conductivity; extension;
I, probe length; T, environmental temperature;
M, Hartmann number = Bd \/ (o/u); Tp, probe temperature;
Nu, Nusselt number = hd/K ; U, probe velocity;
Nu, conduction Nusselt number; u, free convection velocity;
Nu,, Nusselt number for zero Hart- X, ¥, Cartesian coordinates;

mann number; o, thermal diffusivity;
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B, coefficient of thermal expansion;

0, velocity boundary-layer thick-
ness;

O thermal boundary-layer thick-
ness;

AT, temperature difference = T -1

A nondimensional parameter de-
fined in equation (10);

U, viscosity;

v, kinematic viscosity:

0, density;

G, electrical conductivity.

INTRODUCTION

A MAJORITY of velocity, temperature and respec-
tive fluctuating quantity measurements in
Magneto-Fluid-Mechanic (MFM) flows have
been obtained through use of a quartz-coated
hot film probe in mercury.

Early experimentalists [1-5] using coated
probes noted considerable difficulty in recording
repeatable and stable heat transfer—velocity
calibration curves in mercury. Calibration curve
irreproducibility and lability were attributed to
the variation of the thermal contact resistance
layer at the probe-mercury interface essentially
by the formation of an oxide impurity layer on
the probe’s surface. These problems necessitated
the development of theories by which calibra-
tion data could be correlated with one another.

Sajben [1], using enamel-coated tungsten
wires, postulated that the contaminant effect
manifested itself as an additive resistance to the
heat transfer from the probe. His consideration
permitted this effect to be circumvented by
expressing heat transfer-velocity results in the
form of a new heat transfer variable. The limita-
tions of the Sajben correction constant were in
the assumptions that it was derived for an
infinitely long cylinder of negligible end effects
with steady state heat transfer where the Nusselt
number is solely a function of the Péclét
number. Sajben noted that Nu(0) (present in the
expression of the Sajben correction constant)
should be interpreted as a reference value other
than at Péclét number equal to zero, where the
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Nusselt number may be a function of the
Grashof and Hartmann numbers. Sajben
demonstrated that when this procedure was
correctly applied various heat transfer—velocity
data could be correlated exceptionally well
within the range 0 < Pe' < 1. Zero flow
referencing by Malcolm [7] resulted in a
divergence of his data as the Péclét number
approached a value of one.

Hua [3] also incorporated the concept of an
impurity coating in his development of a semi-
empirical theory for the heat transfer from
quartz-coated probes in mercury. He proposed
that the flow about the probe be divided into a
stationary fluid inner region and an inviscid
flow outer region. By properly choosing the
dimensions of an ellipsoidal-shaped displace-
ment boundary Hua was able to match his and
Sajben’s calibration data with theoretically
predicted values. In Hua’s theory the displace-
ment boundary shape and impurity constant
were determined experimentally.

Hoff [8] surmounted the quartz—mercury
interface problem by depositing a fine layer of
gold or copper on the probe’s quartz surface.
Using this approach he found excellent agree-
ment with the theory of Grosh and Cess [9] for
heat transfer from cylinders to fluid of low
Prandt] numbers.

In a review of hot film anemometry in mercury
Gardner* [10] demonstrated that, when the
effect of an impurity fouling factor was accounted
for, the data of Hua [3], Hoff [8] and Hill [12]
agreed with both the theory of Gross and Cess
[9] and Hua [3] for 1 < Pe’ < 15. In the range
0 < P’ <1 the theory of Gross and Cess
underestimated the experimental data. Through-
out the entire Péclét number range the data of
Hua upon consideration of the impurity constant
was found to be within 1 per cent of values
predicted by King’s Law [13]. Gardner con-
cluded that it was possible to correlate hot film

* Also refer to Hill and Sleicher {11] for an extensive
review of heat transfer from finite and infinite length
cylinders.
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probe calibration data in mercury with existing
semi-empirical laws when including the impurity
factor.

Magneto-Fluid-Mechanic effects on the heat
transfer from the hot film probe were also
considered. Magnetic field dampening of free
convective heat transfer was qualitatively
observed and first reported by Gardner [14].

Malcolm [15] presented a calibration curve
correction procedure for the case of parallel
probe axis orientation with the magnetic field
for strengths greater than 4000 Gauss. This
procedure was based on free convection measure-
ments for one Grashof number case and the
assumption that MFM effects on forced con-
vection were absent for the specified geometry.
It will be seen later that our experimental results
refute Malcolm’s assertions.

Recently Platnieks [16], using tungsten wire
probes in mercury insulated by a fine layer of
silicon monoxide, reported no measureable
MFM reduction of the probe’s heat transfer over
the forced convection range 8 < Re < 48. These
experiments were performed at low magnetic
interaction values (of the order 10™2 or less).*

EXPERIMENTAL APPARATUS

In the present investigation quartz-coated
hot film probes were calibrated in a tank filled
with mercury with and without the application
of a horizontal magnetic field aligned parallel
with the probe’s axis (Fig. 1(a)). These calibra-
tions wereaccomplished by traversing a Thermo-
Systems Inc. 1210-60 Hg (I = 0-200 cm and
d = 0015 cm) or 1210-20 Hg (I = 0-100 cm and
d = 0-005 cm) quartz-coated platinum hot film
probet vertically at various constant velocities
through a tank filled with mercury and recording
its bridge voltage output. The calibrating system

* The maximum value of the interaction parameter was
found to be 0-005 based on a Reynolds number of 10 and a
magnetic field strength of 8000 Gauss where the charac-
teristic length was chosen to be the diameter of the probe.

t Platinum films were used to avoid magnetic effects
observed with films of magneto-resistive materials, e.g.
nickel [16].
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F1G. 1(a). The geometry of the problem.

was designed to be minimally free of vibrations
over a range of constant velocities (0-10 cm/s).

The calibrating mechanism was housed in an
iron structure mounted atop the Purdue
University Magneto-Fluid-Mechanic Labora-
tory’s electromagnet (Fig. 1(b)). A stainless steel
bar, into which the probe holder was press-
fitted, was connected to the front of a support
plate. This plate was traversed by means of a
vertical turn screw positioned through its center.
The turn screw was driven via a Pic belt and
pulleys by a variable speed motor. A linear
bearing-guide rod system was aligned parallel
to the turn screw and passed through the support
plate to assure smooth travel.

The probe holder extended down into a
rectangular stainless steel tank (152 cm x
57 em x 737 cm) placed between the pole-
faces of the electromagnet. The tank was filled
with triple-distilled mercury (~ 6200 cm?).

The water cooled d.c. electromagnet was
powered by a d.c. motor-generator set. A
maximum field of 15000 Gauss could be
obtained in the electromagnet’s gap (7-7 cm)
between its polefaces (30'5 cm x 147-0 cm).

MEASUREMENTS
The essential parameters measured were the
probe velocity. the environmental temperature
of mercury, the average bridge voltage of the
anemometry system and the magnetic field
strength.
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The test region was located from 3 cm after
the beginning to 3 cm before the end of the pole-
face region. Two microswitches were positioned
on the traversing mechanism structure. As the
probe travelled through the test region, each
microswitch was triggered at the appropriate
time, sending start and stop commands to the
various recording equipment.

The velocity was computed from the distance
between the microswitches (25-4 c¢m) and the
time recorded on a Universal time counter. A
linear potentiometer was mounted on the top
of the structure to check for constant velocity. A
string was wound around its axis and connected
to the probe support plate. The output of the
potentiometer, connected in series with a 15-V
dry cell, was displayed on a Tektronix storage
oscilloscope. A linear trace indicated a constant
velocity.

The environmental temperature of the mer-
cury was measured from an iron—constantan
thermocouple placed in the center of the test
region; experimental measurements verified the
same temperature throughout the mercury
environment. It was monitored on a VIDAR
integrating digital voltmeter.

An integrated bridge voltage from the output
ofa Thermo-Systems Inc. 1050 constant tempera-
ture anemometer was obtained by using the
microswitches. From this integrated bridge
voltage and the time of traverse, an average
bridge voltage was calculated. The anemometer
output was also connected to a Thermo-
Systems Inc. RMS voltmeter to check if vibra-
tions in the system produced significant velocity
fluctuations (>0-5 per cent RMS).

The magnetic field strength was measured
from the voltage drop of a shunt in series with the
coil of the electromagnet (calibrated with a
Scalamp fluxmeter).

The experimental scheme included the
measurement of a stable and repeatable calibra-
tion curve for the non-magnetic case. This
usually was not accomplished before approxi-
mately 50 probe operating hours in the same
mercury environment, During this initial period
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Nusselt number values were found to differ by
as much as 10 per cent for the same Reynolds
number. Eventually these variations subsided
and Nusselt numbers could be repeatedly
measured within 1-1 per cent error. This
anomalous behavior can possibly be attributed
to a wetting of or impurity deposition upon the
probe-mercury interface which developed over
a period of time and finally established a uniform
rate of heat transfer between the probe and the
environment,

Once repeatability was established, a calibra-
tion within a magnetic field was determined.
This was followed by a verification that the
non-magnetic case curve had not altered during
measurements within a magnetic field. This
procedure was repeated after all magnetic cases
examined. Each experimental trial at a velocity
was executed three times to further insure
reproducibility of the data.

Calibrations throughout the entire Reynolds
and Hartmann number range investigated were
obtained for two different 0-015 cm dia probes
operated at approximately the same temperature
difference with the environment (AT ~ 46°C).
Additional measurements at zero Reynolds
number were made using 0-015 cm and 0-005 cm
diameter probes each operated at two tempera-
ture differences (AT ~ 21°C and ~ 43°C). Initial
observations at zero Reynolds number indicated
a variation of heat transfer values about some
mean (which has been previously observed [17]).
Therefore, the time period over which the
measurements were integrated was increased
(to over 300 s) until repeatability of the same
heat transfer data was attained (within 1-1 per
cent error).

Additional errors associated with instru-
mentation involved in measurements of the
Nusselt, Reynolds and Hartmann numbers
were found to be 007, 0-88 and 0-50 per cent
respectively.

RESULTS
The heat transfer from the probe was corre-
lated with the velocity and magnetic field
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strength through the non-dimensional Nusselt,
Reynolds and Hartmann numbers.

The expression for the Nusselt number was
found by equating the power supplied to the
probe with the heat flux from the probe to the
mercury. All Nusselt numbers were referred to
the same temperature [18]. The characteristic
length in the Reynolds and Hartmann numbers
was chosen to be the diameter of the probe. The
respective Reynolds and Hartmann numbers for
each Nusselt number were calculated.

Calibration curves of the Nusselt number
versus the Reynolds number for zero Hartmann
number exhibited the same characteristics of
curves obtained by previous experimentalists
using hot film probes in mercury. These zero
Hartmann number data when expressed in the
form of the Sajben correction constant versus
Péclét number were found to agree well with
the data of Hill and Sleicher [6] and of Malcolm
[ 7] when using their zero referencing procedure.

Nondimensional results were plotted as the
logarithm of the Nusselt number versus the
logarithm of the Reynolds number to examine
if any power relations existed (Fig. 2). Four

15—

Gr=19-32

M

mAX2 O Xp o

1443

distinct regions of heat transfer were identified.

Region A was characterized by constant
Nusselt number lines which extended from zero
Reynolds number up to a critical Reynolds
number. This critical Reynolds number, which
decreased for increasing Hartmann numbers, is
indicated in Fig. 2 by dotted line 1.

Region B was marked by increasing Nusselt
number values for increasing Reynolds numbers.
This region extended over a wider Reynolds
number range in the magnetic case. Its termina-
tion occurred along a constant Nusselt number
line shown in Fig. 2 by dotted line 2.

In Region C the Nusselt number was directly
proportional to the Reynolds number raised to
the 0-24 power. Although the onset of this region
was delayed in the presence of a magnetic field,
the power relation remained the same. Region
C ended along a constant Nusselt number line
shown as in Fig. 2 by dotted line 3.

Region D exhibited a trend similar to Region
C but was marked by an increase in the power of
the Reynolds number in the heat transfer
relation from 0-24 to 0-27.

It is noted that power laws found in Regions

]
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F1G. 2. Nondimensional calibration curves at different Hartmann numbers.
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C and D varied for each hot film probe. Power
laws found in Region C varied between 0-12 and
0-26 and in Region D between 0-25 and 0-50.
These power law variations within a region for
different probes (also exhibited in the calibrations
of other investigators calibrating in mercury
[3, 11]) were attributed to the fouling effects
which physically alter the magnitude of the
heat transferred from the probe. However, the
aforementioned experimental procedure assures
that these effects remained constant throughout
the experiment. Nusselt number results pre-
sented in this paper therefore include the
inherent effects of fouling on the probe’s heat
transfer.

THEORETICAL CONSIDERATIONS

The current experimental results infer that
magnetic field effects are exhibited through the
inhibition of the convective mechanisms of heat
transfer. The four regions of heat transfer were
postulated to correspond to the following fluid
mechanical convective mechanisms: free con-
vection, initial forced convection, the formation
and growth of the stationary Foppl vortex pair
and von Karman vortex shedding (Fig. 3} [19].

{(A) The region of free convection. The exact
solution of heat transfer from a finite probe*

i
|
|
i
|
i
|

log M

i
i
t
L

lag Re

FIG. 3. A qualitative calibration curve with postulated flow
configurations.

* Jjd = 13-3 for the 0-015 cm dia probe and //d — 20-0
for the 0-005 cm dia probe.
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entails the consideration of three-dimensional
variations in velocity and temperature ac-
companied by heat conduction loss to the
supports. A simplification is made by acknow-
ledging that a majority of the heat transferred
from the probe can be expressed in the case of
two-dimensional free convection.

When examining free convection from a small
diameter cylinder the velocity is so small that
the inertia term involving the square of the
velocity can be neglected. Further, the viscous
dissipation term is negligible. Because there is
no external pressure gradient imposed on the
flow, the pressure force in the vertical direction
becomes zero. Thus, the conservation equations
of momentum in the x-direction (Fig. 1) and
energy can be written as:

&% . )
0=y 33‘ — oB%u + gBpAT ih
Jy
and
eT T )
H— = a 5. 2
ox oy’ :

The ponderomotive force (—oB*u) and the
bouyancy force (gfpAT) represent the body
forces per unit volume, where AT'is the tempera-
ture difference between the probe’s platinum
film and the environment.

The mathematical difficulty encountered m
obtaining an exact solution of the free convection
equations for small diameter cylinders lead us
to consider an approximate method by which
essential results could still be found. Here, an
order of magnitude analysis of the type offered
by Lykoudis and Yu [20] was employed. The
order of magnitude equations corresponding to
equation (1) and equation (2) can be written as:

0= — ”gfz' — C,0B*u + C,gBpAT  (3)

and
AT oy
d 9

AT

C3M 73

The constants C,. C, and C, are empirical.
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This analysis permits the necessary un-
coupling of the momentum and energy equations
by substituting into equation (3) the expression
for the free convection velocity, u, found from
equation (4). The resulting equation can be
nondimensionalized and solved for the Nusselt
number by employing the equation:
hd _ d d

S~ S (P, 5)

" KT8

One obtains*
/ 2GrPr/C
Nu = : 4
! \/ le + M + 4Grc5/c§)) ©

where

C

1
and C, = (7)

_ 1
‘o C2C3 - C2C3-
This expression for the free convection above a
horizontal cylinder in a magnetic field differs
only in the constants from the momentum
integral solution by Lykoudis [21] for the
natural convection from a vertical hot plate in
the presence of a magnetic field.

It was observed experimentally that as M
became large the Nusselt number approached a
limiting value (the conduction Nusselt number,
Nu). Equation (6), then, is amended to read as:

2GrPr/C
Nu=N s .
W= N \/ <M2 + JM* + 4GrC,/C >

®

For the zero Hartmann number case this
expression reduces to:

Nu, = Nu_ + <g>*\/(1"‘)- ©)
C5

Equations (8) and (9) can be combined to form
the nondimensional parameter A:

* The positive sign of the square root term in the de-
nominator of equation (6) is taken since Nu was observed
to decrease with increasing M.
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J = Nu — Nu,
- Nu0 - Nuc
_ \/(CGGr) (10)
M? + J(M* + C(Gr)
where
Cs = 4C5/C§. (11)

Here A expresses the ratio of free convective
heat transfer present within a magnetic field to
the total free convective heat transfer in the
non-magnetic case. C, is the only constant
which need be determined experimentally. In
Fig. 4(a) equation (10) is compared with the
experimental results obtained operating a
0015 cm dia probe for two separate Grashof
number cases (AT = 46-:3°C and 23-7°C). It is
noted that C., determined from one experi-
mental measurement, remained constant in both

® 6r=1932
AGr- 948

N
4N

: ‘\N\
a—_—
i R .
0 i 2 3 i

M

F1G. 4(a). Parameter 1 at different Hartmann numbers for
0-015 cm dia probe.

-8
A% ® Gr=060!
| A Gr=028!

®e }.-
0 05 10 15

Fi1G. 4(b). Parameter A at different Hartmann numbers for
0-005 cm dia probe.
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cases (C, = 0-0296). It is seen that as 4 becomes
small, there is a deviation of the experimental
values from the predicted results. This occurs
when conduction becomes the predominant
mechanism of heat transfer and equation (10)
can no longer be interpreted as a valid expression
for the heat transfer process.

In order to examine the consequences of a
wider variation in the Grashof number and to
ascertain the possible universality of C, for all
probes we obtained experimental results (Fig.
4(b)) by operating a 0-005 cm dia probe for two
additional Grashof number cases (AT = 40-6°C
and 19-0°C). In these cases the value of C, was
determined to be 0-0015. This variation among
probes can be understood phenomenologically
by the presence of an impurity coating on the
probe’s surface whose inhibitive effect on the
heat transfer is greater for larger diameter probes.

These results yield that the magnetic field
strength needed for complete suppression of
free convection varies with Grashof number.
This effect was not considered in the free con-
vection correction procedure of Malcolm [ 15].
(B) The region of initial forced convection. If we
examine an expanded representation of the heat
transfer data for low Reynolds numbers as
shown in Fig. 5 we observe that the departure
from the constant free convection Nusselt
number line occurs at a Reynolds number of
about three for the non magnetic case. Further,
for increasing Hartmann numbers this rise in
heat transfer occurs at lower Reynolds numbers.

M

>

¢}
333
074 156
195
273

e -

351

14-68
| Equa‘hon {12)
) o= —r\

FiG. 5. Nondimensional calibration curves at different
Hartmann numbers for low Reynolds numbers.
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This increase in the Nusselt number for increas-
ing Reynolds number is indicative of a new heat
transfer mechanism. This region begins when the
forced convection velocity exceeds the free con-
vection velocity. This statement can be phrased
in an inequality. We note that the order of
magnitude of the free convection velocity is
given by equation (4). After the usual non-
dimensionalization to introduce the appropriate
nondimensional numbers, this inequality is
expressed as:

T
Re> | —
CyLM° +

Since the coefficient C, was determined before
in the case of free convection, only one heat
transfer measurement within a magnetic field
is required to fix the coefficient product 1/C,C,,
thereby completely defining inequality (12).
Inequality (12) is compared with experiments at
various Hartmann numbers in Fig. 5. The
deviation from experimental results at large
Hartmann numbers is expected since inequality
(12) will not be valid when conduction is
prominent.

Inequality (12) can be further employed to
examine the zero Hartmann number case. It
reduces to:

26r/C,

, o (12
JM* + C,Gr) )

Re, > C.\J(Gr) {13

where

= JIC,/Cy). (14)

This square root criterion simply implies that
the inertia force must exceed the buoyancy
force for a rise in heat transfer to occur.

When we first encountered this result which
so completely describes the heat transfer rise
throughout the Hartmann number cases
examined, we found an apparent variance with
the classical cubic root approximating criterion
established by Collis and Williams [22]. They
advanced that the Reynolds number must exceed
tbe cubic root of the Grashof number in order
for forced convection to begin. This situation



MAGNETO-FLUID-MECHANIC HEAT TRANSFER

=0- 172 Ve
® 4 0 Collis and Williams Re=066r o

~
& 7\/"3/ /\Re-ef‘“
-
-
N

, N Re=T16r' /2
- N Red0 62
| | | | I L | | |

107 10°¢ 10

+Present work

log Re
\

“Re=3-26r""?

log Gr

FiG. 6. Comparison with experiment of criterion tor the
onset of forced convection.

prompted a reexamination of their data from
heated horizontal wires in air (Fig. 6). The
discrepancy was resolved when we observed in
the light of the current finding that the square
root criterion or inequality (13) actually agreed
more exactly with their data than their cubic
root criterion. Here C, was determined for each
case.

We concluded that in order to exactly
determine the Reynolds number at which forced
convection begins for a particular Grashof
number case one must employ the analysis
presented above and determine experimentally
the coefficient C,. However, the cubic root
criterion remains a more convenient approxi-
mating criterion in that an experimental coeffi-
cient need not be determined. Values within an
error of less than 30 per cent of those measured
can be obtained using this approximation (see
Fig. 6).

An analysis describing MFM heat transfer
throughout the initial region of forced convec-
tion was not attempted since the underlying
convection mechanism is not well understood.

(C) The region of the stationary Féppl vortex
pair. Let us now draw a constant Nusselt
number line passing through the point of the
zero magnetic field line in Fig. 2 where the
Reynolds number is equal to five. We see that
the intersection of this line with all other heat
transfer lines for different magnetic fields is
along a line above which the Nusselt number
dependence on the Reynolds number is given by
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a power law. Furthermore, we observe that this
power law is the same, regardless of the intensity
of the magnetic field. Because of this-behavior,
we postulate that regardless of the intensity of
the magnetic field, as soon as the stationary
Foppl vortices have been formed, the heat
transfer rates will be the same.

We now wish to predict theoretically the
Reynolds number at which the Foppl vortices
are formed, that is the Reynolds numbers
corresponding to the intersection of the line
separating Region B to C for different magnetic
fields. In order to answer this question, we sought
guidance through the work of Chester [23],
Payne and Pell [24], and Chang [25] who have
computed drag coefficients at low Reynolds
numbers for various axially symmetric bodies in
the presence of aligned magnetic fields. Their
results are typically presented in the following
form:

(Drag),,
(Drag),

=14+ CM + C,M~ (15)

Since for small Reynolds numbers the drag is
proportional to the velocity, one could use the
above correlation as an indication of the ratio
of the two critical Reynolds numbers at which
the Foppl stationary vortices are formed.
Furthermore, since we can use at least two of our
experimental results from Fig. 2 to determine
the two coefficients C; and C,, we could check
the validity of this representation. In fact, a
least square best fit of all of the data was used
and the result is the following:

R
Zm | 4+ 0355 M + 0155 M2,

Re, (16)

Figure 7 compares this equation with all of our
data and it seems that the fit is fairly good. The
value of the coefficient C, in the above equation
is very close to the ones theoretically computed
by Chang [25], Chester [23] notwithstanding
the fact that their work refers to Reynolds
numbers lower than five. Example values of C,
are 0-318 for a flat disc and 0-375 for a sphere.
On the other hand, their values of C, are of



1448

Re,/Re,

M

F1G. 7. Féppl vortex pool formation at different Hartmann
numbers.

order zero, which differ from the value found in
our case. The result of the above equation
implies that in the presence of the magnetic
field, the probe must be traversed at a higher
Reynolds number in order to obtain the samc
heat transfer value as in the non magnetic case.
(D) The von Kdrmdn vortex region. The
observed change in the convective heat transfer
mechanism, described by an increase in the
power of the Reynolds number for the Nusselt
number—Reynolds number relation (Fig. 2),
marks the initiation of shedding of the station-
ary vortex pattern from behind the probe.
Experimental results for the zero Hartmann
number case establish the onset of vortex
shedding at a Reynolds number of about
40 [26]. In the present investigation a change
in the heat transfer process occurred at a
Reynolds number of 34. This somewhat prema-
ture manifestation could be attributed to small
vibrations of the moving probe which lowered
the initial shedding frequency [26].
Magneto-fluid-mechanic  vortex shedding
from a cylinder in a crossflow of mercury has
been examined by Papailiou [27]. He experi-
mentally observed by traversing various dia-
meter cylinders through a tray filled with
mercury that the application of a magnetic
field parallel to the axis of the cylinder (for
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0-02 < M?/Re < 6) suppressed the size of the
von Karman vortex street.

We shall now attempt to determine the locus
of transition from Region C to Region D. Here
again, we observe that if we trace a constant
Nusselt line passing from the intersection of the
zero magnetic field line of Fig. 2 at Reynolds
number 34 (the point after which in our experi-
ments von Karman shedding has started), we
find that this line intersects other lines at a
point where transition from one power law
to another occurs. For this reason, we postulate
that shedding will occur in the presence of the
magnetic field when the stationary vortices
reach the same size at which they would have
separated in the ordinary fluid mechanical
case. It is well known that Taneda [28] has
shown that the length of this quasi-stagnant
region behind a cylinder grows linearly with
increasing Reynolds numbers (see Fig. 8). Its
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F1G. 8. Taneda’s [28] experimental results.

limit is, of course, at a Reynolds number around
40 where wake instabilities produce detachment
from the cylinder. The theoretical determina-
tion of the critical Reynolds number after which
the Féppl vortices will become free von Karman
vortices is a difficult task. In order, however,
to answer this question, we felt that an equation
similar to equation (15) might be appropriate.
Application of this formula in this case by use
of our experimental results has given us the
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same equation which is tested in Fig. 9 where
the dots represent our experimental data.

As in Region C the power in the Nusselt
number-Reynolds number relationship re-
mained constant for varied magnetic fields.
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F1G. 9. von Kirman vortex shedding at different Hartmann
numbers.

Further, only a slight variation in h from
Region C to Region D was observed (also
exhibited in the data of Hill and Sleicher [6]).
This minimal effect of the additional convective
mechanism upon the probe’s heat transfer is
the result of the high thermal conductivity
of mercury.

The observed MFM reduction of forced
convective heat transfer demonstrates that mag-
netic field interaction is present for magnetic
interaction parameter values above approxi-
mately 0-02. An order of magnitude argument
supports that MFM effects should be present
for values of order one. Here, the pondero-
motive force is on the order of the inertia
force. Further, Platnieks’ experiment shows
that when magnetic interaction parameter values
become lower MFM effects upon the probe’s
heat transfer are not measureable.

As stated earlier, these forced convection
results are in variance with Malcolm’s findings.
Malcolm [15] states that in the case when the
magnetic field is aligned parallel to the probe
axis and perpendicular to the forced convection
flow we would expect no interaction of the
magnetic field with the flow. His argument is
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based upon a theorem stated in Shercliffs
book [29], namely that in a two-dimensional
magneto-fluid-mechanic flow wherever the flow’s
vorticity vector is aligned parallel to the
magnetic field there will be no MFM interaction
with the flow. This theorem is correct except
that although the two-dimensionality of the
fluid flow and the magnetic field can be main-
tained, the current lines that can be induced
certainly will do so in a three-dimensional
fashion, thus annulling the premises on which
the theorem rests. In addition, Malcolm did not
support his assertions by making measurements
in the forced convection region [30]. In fact,
our findings show that considerable interaction
of the magnetic field with the flow exists.

CONCLUSIONS

The primary result of the present work is the
experimental discovery of four characteristic
regions of MFM heat transfer from a hot film
probe in the Reynolds number range from 0 to
130. Heat transfer in these four regions is
damped by a magnetic field at which the pon-
deromotive over inertia forces are of order one.
These findings are supported through approxi-
mate solutions of the governing conservation
equations. A summary of each region follows.

(A) The region of free convection. The effect
of the magnetic field was to suppress the free
convection, allowing conduction to become the
major heat transfer mechanism at higher Hart-
mann numbers. The heat transfer of the probe
for various Hartmann number cases at zero
Reynolds number was described by an order of
magnitude approximation of the momentum
and energy equations.

(B) The region of initial forced convection.
The presence of the magnetic field lowered the
Reynolds number at which the onset of forced
convection occurred. The onset of this region
mathematically was represented by an expres-
sion which compares free and forced convec-
tion velocities. This criterion predicted the
beginning of forced convection except for high
Hartmann numbers.
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(C) The region of the stationary Féppl vortex
pair. The magnetic field acted to delay the
Foppl vortex pair formation. A theoretical
correlation of the Reynolds numbers as a
function of Hartmann numbers at which transi-
tion occurs from Regions B to C is offered. The
power in the Nusselt number—Reynolds number
relation was found to be independent of mag-
netic field strength.

(D) The von Kdrmdn vortex region. The
magnetic field acted to suppress the size of the
von Karman vortex street. A theoretical correla-
tion of the Reynolds numbers as a function of
Hartmann numbers at which transition occurs
from Regions C to D is presented. Vortex
shedding slightly increased the power in the heat
transfer relation which was found to be inde-
pendent of magnetic field strength.

The analysis presented above provides a
description of MFM heat transfer from hot film
probes for 0 < Re < 130 and 0 < M < 468
where M?%/Re is of order one. Specific quantita-
tive relations for each probe can be found for
all Hartmann numbers.
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TRANSFERT THERMIQUE A PARTIR DE SONDES A FILM CHAUD EN MHD

Résumé—Cet article présente une recherche expérimentale de transfert thermique en MHD depuis des
sondes de quartz recouvertes d’un film chaud (0,015 cm et 0,005 cm de diamétre) traversées verticalement
dans un réservoir rempli de mercure et alignées axialement avec un champ magnétique horizontal. Les
résultats montrent dans la sonde une réduction du transfert thermique due au champ magnétique dans
les domaines du nombre de Reynolds de 0 & 130 et du nombre de Hartmann de 0 a 4,68 pour des valeurs
du parameétre d’interaction magneétique de I'ordre de I'unité. On a identifié quatre régions de transfert
thermique chacune d’elle étant associée & une configuration d’écoulement spécifique au voisinage de la
sonde et on les décrit ainsi:

(1) Dans la région de convection libre, le champ magnétique supprime le transfert thermique par con-
vection libre. limitant éventuellement le transfert thermique a la conduction thermique. Le transfert
thermique dans cette région est examiné au travers d’une solution approchée des équations de quantité
de mouvement ct d’énergie.

(2) Pour des trés faibles nombres de Reynolds d’environ trois, il se produit une augmentation dans le
transfert thermique depuis I’état de convection libre. Le nombre de Reynolds pour lequel cette région
initiale de convection forcée devient importante est estimé par un critérc théorique qui compare les vitesses
de convections libre et forcée. Cette augmentation devient détectable pour un faible nombre de Reynolds
en présence d'un champ magnétique.

(3) A partir d'un nombre de Reynolds d’environ cing, le nombre de Nusselt peut étre exprimé par une
formule en loi de puissance du nombre de Reynolds ou la puissance est indépendante de I'intensité du
champ magnétique. On présente aussi une relation théorique qui détermine les nombres de Reynolds
pour divers nombres de Hartmann pour lesquels débute la paire de tourbillons stationnaires de Foppl.
Le champ magnétiquc inhibe la formation de cette configuration.

(4) La génération de l'allée de tourbillons de Von Karman séchappant-derriére la sonde pour un
nombre de Reynolds d’environ 34, produit une légére augmentation dans la loi de puissance de la formule
du transfert thermique qui est encore indépendant de I'intensité du champ magnétique. Les nombres de
Reynolds pour divers nombres de Hartmann pour lesquels I'échappement commence sont représentés
mathématiquement. Le champ magnétique retarde I’apparition de I'allée de tourbillons et diminue sa taille.

HYDROMAGNETODYNAMISCHE WARMEUBERTRAGUNG VON HEISSFILMSONDEN

Zusammenfassung— Diese Arbeit vermittelt die Ergebnisse einer experimentellen Untersuchung der
hydromagnetodynamischen Wiarmeiibertragung von quarzbeschichteten Heissfilmsonden (0,015 cm und
0,005 cm Durchmesser), die senkrecht durch einen mit Quecksilber gefiillten Behélter bewegt werden, der
axial fluchtend in einem horizontalen Magnetfeld liegt. Die Ergebnisse der Untersuchung zeigen eine
Verminderung der Wirmeiibertragung von der Sonde infolge des Magnetfeldes im Bereich der Reynolds-
Zahlen von 0 bis 130 und im Bereich der Hartmann-Zahlen von 0 bis 4,68 fiir Werte des magnetischen
Wechselwirkungsparameters der. Grossenordnung eins. Es wurden vier Bereiche identifiziert, wovon jeder
mit einer spezifischen Stréomungskonfiguration um die Sonde verbunden ist. Die verschiedenen Bereiche
werden wie folgt beschrieben:

1. Im Bereich der freien Konvektion unterdriickt das Magnetfeld die Wirmeiibertragung durch freie
Konvektion und begrenzt schliesslich die Warmeiibertragung auf die Wirmeleitung. Die Wirmeiiber-
tragung lin diesem Bereich wurde durch eine Niherungsiosung der Impuls- und Energiegleichung
untersucht.

2. Fiir schr niedrige Reynolds-Zahlen von ungefihr drei tritt eine Zunahme der Wirmiibertragung
gegeniiber dem Zustand der freien Konvektion ein. Die Reynolds-Zahl, bei denen dieser Anfangsbereich
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der erzwungenen Konvektion an Bedeutung gewinnt, ist durch ein theoretisches Kriterium vorausgesagt,
das die Geschwindigkeiten der freien und erzwungenen Konvektion vergleicht. Dieses Anwachsen wird
feststellbar bei niedrigen Reynolds-Zahien in Gegenwart eines Magnetfeldes.

3. Beginoend bei einer Reynolds-Zahl von fiinf. kann die Nusselt-Zahl durch cin Potenzgesetz als
Bezichung der Reynolds-Zahl ausgedriickt werden, wobei die Potenz unabhingig von der Magnetfeld-
stirke ist. Auch eine theoretische Beziehung wird angegeben, die dic Reynolds-Zahlen fiir verschiedene
Hartmann-Zahlen bestimmt, bei denen dieses stationdre Foppl-Wirbel-Paar beginnt. Das Magnetfeld
verhindert eine Formation nach diesem Modell.

4. Die Erzeugung einer Karmanschen-Wirbelablosung hinter der Sonde bei einer Reynolds-Zahl von
ungefihr 34 liefert eine leichte Zunahme im Potenzgesetz der Wirmeiibertragungsbezichung. die wieder
unabhingig von der Magnetfeldstiirke ist. Die Reynolds-Zahlen fiir verschiedene Hartmann-Zahlen bei
denen die Ablosung beginnt. sind mathematisch dargestellt. Das Magnetfeld verzOgert den Beginn der

Wirbelstrasse und unterdriickt seine Grosse.

MATHHUTOMN PO TUHAMUYECKUN NEPEHOC TEIIA OT HAUPETBIX
MMAEHOYHBIX JATUUROB

AHHOTAIMHA—D3  CTATBC  UPMBOIATCH  pe3YIBLTATH  HECUCPHMEHTATLHOIO  HCC e OBAHRA
MArHUTOTHADOITHAMUYLCHOIO TIePeHOCa TeI1a OT NOKPLITHX KBAPLEeM HATPETBHIX ILTeHOYHBIX
gatunkos auamerpom 0,015 em u 0,005 cM, mepememaeyMpXx BePTHRAIBHO Yepes eMKOCTb,
BA00JHEHHYI DPTYTLI 11 VCTAHOBJICHHYIO Ha OOl OCH ¢ TOpM3OHTAJBHBIM MArHHTHBIM
nojyem. IonyuyeHnnsle JaHHLIC CBUIETENBCTBYIOT 00 YMEUbHICHNT TeTI000MEHA B jJaT4Mke 110
BAMAHUEM MATHUTHOTO DOJA B JUanasoHe 3Hadenuil wncaa Peiinoapjca ot 0 o 130 1 uncaa
Taprmana ot 0 go 4,68 npit suadeHHsX 1MapaMerpa MarHMTHOrO B3aHMOACHCTBHA NHOPAIKA
¢, (MHHLBI. BBIedATes Caefyomue ueTeipe 00JACTH TENIOMepPeHOCA, KAMTAA 113 KOTOPLIX
cBABaHa ¢ 0coboit KoRGUIypanueil Tevenna BOINAN 30HA |

1. B obmacti ¢cBOOOXHOIN KOHBEKIIMHM MArHUTHOE MO 110,14BAAeT CBOOOTHYI KOHBEKLHIO,
OrpaHUYUBAA MPOLHECe TeImompoBOAHOCTLI0. [List pacueTa TemmzooOmeHa B nTolt olmacTy
HUCTIOAb3YeTCH NMPUOINKeHHOe pellleHle YPaBHeHUH UMIIY.ILeA N pHepriu.

2. JlaAa oveHb MaJBX sHAYeHMH uncxa PellHombIca (HOpAIKRA Tpex) TeUIONEpeIoe
BO3pacTaeT 110 CPaABHEHUIO CO CTaIMEei coboauoi kouBeriuu. ‘ucso Peitnoubxca, 1pn
HKOTOPOM 9Td HAYAJIbHAH 00J1aCTh BBIHYKICHHON KOHBERIMM CTAHOBHUTCA CVUIGCTBEHHOM,
PACCUYNTBHIBAETCA C INMOMOIULIO TEOPETUYECKOrO KPUTepHs, KOTOPLIE XapaKTepusyer OTHOCH-
TeIbHBIE CKOPOCTN CBOGOAHO U BBIHY:KICHHOU KOHBERIMMU. JTO BO3PACTAHHUE TEILIONEPEHOCA
CTAaHOBUTCA 3aMETHBIM [AJA MAJOro duciaa PeilHOIbnca upn Ha MM MATHUTHOTO 11015,

3. Hawmuaa co s3wadenusa unciaa PeilHonbgca, paBHOro HpHMEpHoO MATH, 3dBHCAMOCTL
yncaa Hyccenpra or yucna PefiHOOIBgCA MOMKET OLIThL RBLIpAH(eHA CTOHETHBIN 3AROHOM
qpcsioM PeillHogbca, rie nokasatedb CTelleHd He 3aBHCHT OT HANPSHEeHHOCTH MAlHHTHONO
nona. IlpuBogurest Tawske TeopeTuveckoe COOTHONIEHWE, OIIPERTARIONIee 3HAUCHNA YuCia
Peiimonbaca 1pu pasiMuHelX 3HaYeHHAX uuciaa lapTwana, npu KOTOPHIX  BOBHHUKAOT
yeroiiwnseie napusle Buxpa @éxaa. MarHuTHoe Hode sajiepsinsacT GOPMHUPORAHIE DTOTO
npounecca.

4. O0pasoBaHMe KAPMAHOBCKOM BHXPEBOH J0POMKA 34 B0IIOM UpL ducie Peitnosnsica,
paseoM 1pumMepHo 34, MpUBOIMT Kk HeOOILIIOMY YBEIHUCHHIO TTOKABATETH CTEIeHU B
saBucumocTu yuciaa Hycceawvra or yncaa PelfHonhca, KOTOpadA CHOBA CTAHOBATCH HE3ABUCH-
MOl OT HANpPAMEHHOCTH MalrHuTHoro noms. Inciaa Peifinompica A0A PABIHYHBIX 4HCed
[apTMaHa, fpn KOTOPHIX HAYMHAETCH BUXpeobpasoBanme, UpPeJCTABICHRl MaTeMaTH1eCK.
MarauTHoe 1o/e 3ajepauBaer c0pas3oBaHue BUXPEBOil IOPOHKN 11 OTPAHNYMUBACT €€ PABMED.



